当前位置:Family

初中数学找规律公式总结 求初《chū》中数学找规律常见公式(为中考)?

2025-02-24 04:21:30Family

求初中数学找规律常见公式(为中考)?1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线

求初中数学找规律常见公式(为中考)?

1 过两点有且只有一条直线

2 两点之间线段最短[练:duǎn]

3 同角或等角的补角jiǎo 相等

4 同角或等角澳门巴黎人的{拼音:de}余角相等

5 过一点有且只[繁体:祇]有一条直线和已知直线垂直

6 直线外一点与直线上各点连接的所有线(繁体:線)段中,垂线段最短

7 平行xíng 公理 经过直线外一点,有且只有一条直线与这条直线平行

8 如果【读:guǒ】两条直线都和第三条直线平行,这两条直线也互相平行

9 同位角相等,两直{拼音:zhí}线平行

10 内错角相等,两(liǎng)直线平行

11 同旁内角互补,两直线平行(读:xíng)

12两直线(繁:線)平行,同位角相等

13 两直线平行,内错(繁:錯)角相等

14 两直线平行(拼音:xíng),同旁内角互补

15 定理(练:lǐ) 三角形两边的和大于第三边

16 推论 三角形【读:xíng】两边的差小于第三边

17 三角形内角和定理 三角形三个内角(读:jiǎo)的和等于180°

18 推论1 直角三角形的两个锐角{练:jiǎo}互余

19 推论2 三角形的一个外(piny澳门新葡京in:wài)角等于和它不相邻的两个内角的和

皇冠体育

20 推论3 三角形的一个外角jiǎo 大于任何一个和它不相邻的内角

21 全等三角jiǎo 形的对应边、对应角相等

22边角边公理#28SAS#29 有两边和它们的夹角对应相等的两个三角形全quán 等

23 角边角公理#28 ASA#29有两角和它们的夹边对应相等的两(liǎng)个三角形全等

24 推论#28AAS#29 有两角和其中一角的[pinyin:de]对边对应相等的两个三角形全等

25 边边边公理#28SSS#29 有三边对(繁体:對)应相等的两个三角形全等

26 斜{读:xié}边、直角边公理#28HL#29 有斜边和一条(繁体:條)直角边对应相等的两个直角三角形全(拼音:quán)等

27 定理1 在角的平分线上的点到这个角的de 两边的距离相等

28 定理2 到一个角的两边的距离相同的点,在zài 这个角的平分线上

29 角的平分线是到角的两边《繁:邊》距离相等的所有点的集合

30澳门新葡京 等腰三角形的性质定理 等腰三角形的两个《繁体:個》底角相等 #28即等边对等角#29

31 推论1 等腰三角形顶角的平分线《繁体:線》平分底边并且垂直于底边

32 等腰三角形的顶角平分线、底边上的中线和(练:hé)底边上的高互相重合

33 推论3 等边三角形的各角都相《pinyin:xiāng》等,并且每一个角都等于60°

34 等腰三角形的判定定理 如果一个三角形有yǒu 两个角相等,那么这两个角所对的边也相等#28等角《pinyin:jiǎo》对等边#29

开云体育

35 推论1 三个角都相等的三角形是等边三【练:sān】角形

36 推论 2 有一个角等于60°的等腰三角形是等边三角{pinyin:jiǎo}形

37 在直角三角形中,如果一个锐角等于30°那么它所对的[拼音:de]直角边等于斜边[biān]的一半

38 直角三角形斜边上的中线等于(繁体:於)斜边上的一半

39 定理 线段垂直平分线上{读:shàng}的点和这条线段两个端点的距离相等

40 逆定理 和一条线段两个端点距离相等的点,在这条(繁体:條)线段的垂直平分线上

41 线段的垂直平分线可看作和[读:hé]线段两端点距离相等的所有点的集合

42 定理1 关于某条[繁体:條]直线对称的两个图形是全等形

43 定《dìng》理澳门巴黎人 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44定理3 两个图形关于某直线对称,如果它们的《pinyin:de》对应线段或延长线相交,那么交点在对称轴上《读:shàng》

45逆定理 如果两个图形(xíng)的对应点连线被同一条直线垂直平分,那么这两个图形关[繁体:關]于这条直线对【duì】称

46勾股定dìng 理 直[读:zhí]角三角形两直角边(繁:邊)a、b的平方和、等于斜边c的平方,即a^2 b^2=c^2

47勾股定理的逆定[拼音:dìng]理 如果三角形的三边长a、b、c有关系a^2 b^2=c^2 ,那么这个三角形是直角三(练:sān)角《练:jiǎo》形

48定[pinyin:dìng]理 四边形的内角和等于360°

49四边形的de 外角和等于360°

50多边形内角和定理 n边形的内角【练:jiǎo】的和等于#28n-2#29×180°

51推论[繁体:論] 任意多边的外角和等于360°

52平行四边《繁体:邊》形性质定理1 平行四边形的对角相等

53平行四边形性质定理2 平[读:píng]行四边形的对边相等

54推论 夹在两条平行线间的平行[拼音:xíng]线段相等

55平行四边形性质定理3 平行四边形的对角线互相平(拼音:píng)分

56平行四边形判定定理1 两组对角分别相等的四边形是平行[xíng]四边形

57平行四边形判定定理2 两组对边分别相等的四边形是平行四边《繁体:邊》形

58平行四边形判定定理3 对角线互相平分的四边形是平行{读:xíng}四边形

59平行四边形判定dìng 定理4 一组对边平行相等的四边形是平行四边形

60矩形性质定{pinyin:dìng}理1 矩形的四个角都是直角

61矩形性质定理2 矩形的对角{练:jiǎo}线相等

62矩形判定定理1 有三个角是直角的四边(繁:邊)形是矩形

63矩形【pinyin:xíng】判定定理2 对角线相等的平行四边形是矩形

64菱形性质定理1 菱形[拼音:xíng]的四条边都相等

65菱形性质定理2 菱形的对(繁体:對)角线互相垂直,并且每一条对角线平分一组对角

澳门威尼斯人

66菱形面积=对角线乘积的一【拼音:yī】半,即S=#28a×b#29÷2

67菱形判(拼音:pàn)定定理1 四边都相等的四边形是菱形

68菱形判定定理2 对角线互相垂直的平行四边形(pinyin:xíng)是菱形

69正(练:zhèng)方形性质定理1 正方形的四个角都是直角,四条边都相等

70正方形性质定理2正方形的两条对角(拼音:jiǎo)线相等,并且互相垂直平(读:píng)分,每条对角线平分一组对角

71定理【读:lǐ】1 关于中心对称的两个图形是全等的

72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并(读:bìng)且(练:qiě)被对(繁:對)称中心平分

73逆定理 如果两个图[繁体:圖]形的对应点连线都经过某一点,并且被这一

点平分,那么这两个图形关于(yú)这一点对称

74等腰梯形性质定理 等腰梯形xíng 在同一底上的两个角相等

75等腰梯形的两(繁:兩)条对角线相等

76等腰梯形判定定理 在同一底上的两(liǎng)个角相等的梯形是等腰梯形

77对角线相等的[练:de]梯形是等腰梯形

澳门永利

78平行线等分线段定dìng 理 如果一组平行线在一条直线上截得的线段

相等,那么在其他直线上截得的线【繁:線】段也相等

79 推论1 经过梯形一腰的{拼音:de}中点与底平行的直线,必平分另一腰

80 推论2 经《繁:經》过三角形一边的中点与另一边平行的直线,必平分第

三(读:sān)边

81 三角形中位线定理 三角形的中位线[繁:線]平行于第三边,并且等于它

的一半

82 梯形中zhōng 位线定理 梯形的中位线平行于两底,并且等于两底和的

一半 L=#28a b#29÷2 S=L×h

83 #281#29比例的基本性质 如果guǒ a:b=c:d,那么ad=bc

如果ad=bc,那[拼音:nà]么a:b=c:d

84 #282#29合比性质(繁:質) 如果a/b=c/d,那么#28a±b#29/b=#28c±d#29/d

85 #283#29等比性质 如(练:rú)果a/b=c/d=…=m/n#28b d … n≠0#29,那么

#28a c … m#29/#28b d … n#29=a/b

86 平行线{繁:線}分线段成比例定理 三条平行线截两条直线,所得的对应

线段(读:duàn)成比例

87 推论 平行于三《pinyin:sān》角形一边的直线截其他两边#28或两边的延长线#29,所得的对应线段成比例(pinyin:lì)

88 定理 如果一条直线截三角形的两《繁体:兩》边#28或两边的延长线#29所得的对应线段成比(读:bǐ)例,那么这条直线平行于三角形的第三边

89 平行于三角形的一边,并且{练:qiě}和其他两边相交的直线,所截得的三角形的de 三边与原三角形三边对应成比例

90 定理 平行于三角形一边的直线和其他两边#28或两边的延长线#29相交,所构成的(拼音:de)三角形xíng 与原三角形相似

91 相似三角形判定定理1 两角对[拼音:duì]应相等,两三角形相似#28ASA#29

92 直角三角形被斜边上的高分成的两个直角三角形和【读:hé】原三角形相似

93 判定定理2 两边对应成比(练:bǐ)例且夹角相等,两三角形相似#28SAS#29

94 判定定理3 三边对应成比例,两三角形相【pinyin:xiāng】似#28SSS#29

95 定理 如果一个直角三角形{拼音:xíng}的斜边和一条直角边与另一个直角三

角形的斜边和一条直角边对应成比例,那么这两个[gè]直角三角形相似

96 性质定理1 相似三角形对应高的比,对应中线《繁:線》的比与对应角平

分线《繁:線》的比都等于相似比

97 性质定理2 相似三角形周长的比等于相(xiāng)似比

98 性质定理3 相似三角形面{练:miàn}积的比等于相似比的平方

99 任意锐角的正弦值等于它(繁体:牠)的余角的余弦值,任意锐角的余弦值等

于它的余角的正弦(拼音:xián)值

100任意锐角的正切值等于它的余角的余切值,任意锐角的{读:de}余切值等

于它的余角的de 正切值

101圆是shì 定点的距离等于定长的点的集合

102圆的内部可以看作是圆心的距离小于半径的点(繁:點)的集合

103圆的外部可以看作是圆心的de 距离大于半径的点的集合

104同圆或等圆的半径相(拼音:xiāng)等

105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长【练:zhǎng】为半

径的圆(繁体:圓)

106和已知线段两个端点的距离相等的点的轨迹,是着条线段{读:duàn}的垂直

平{读:píng}分线

107到已知角的两边距离相xiāng 等的点的轨迹,是这个角的平分线

108到两条平《pinyin:píng》行线距离相等的点的轨迹,是和这两条平行线平行且距

离相《拼音:xiāng》等的一条直线

109定理 不在同一直线上的三点确定一【拼音:yī】个圆。

110垂径定理 垂直于弦的直径平[拼音:píng]分这条弦并且平分弦所对的两条弧

111推论1 ①平分弦#28不是直径#29的直径垂直于弦,并且平分弦所对的[练:de]两条弧

②弦的垂直平分线经过(繁体:過)圆心,并且平分弦所对的两条弧

③平分弦(xián)所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

112推论2 圆的两条平行弦所夹{练:jiā}的弧相等

113圆是以圆心为对称中心(练:xīn)的中心对称图形

114定理 在同圆或等圆中,相等的圆《繁体:圓》心角所对的弧相等,所对的弦

相等,所对的弦的弦心距(读:jù)相等

115推论 在同圆或等圆中,如果两个圆心角、两[繁:兩]条弧、两条弦或两

弦的弦(繁:絃)心距中有一组量相等那么它们所对应的其余各组量都相等

116定理 一条弧所对的圆周角等于它所对的圆心角的一半{pinyin:bàn}

117推论1 同弧(练:hú)或等弧所对的[读:de]圆周角相等同圆或等圆中,相等的(de)圆周角所对的弧也相等

118推论2 半圆#28或{练:huò}直径#29所对的圆周角是直角90°的圆周角所

对的弦是(pinyin:shì)直径

119推论3 如果三角形一边上的中线等于这边的(de)一半,那(拼音:nà)么这个三角形是直角三角形

120定理 圆的内接四边形的对角jiǎo 互补,并且任何一个外角都等于它

的内对【duì】角

121①直线L和⊙O相交[练:jiāo] d<r

②直(读:zhí)线L和⊙O相切 d=r

③直《读:zhí》线L和⊙O相离 d>r

122切线的判定定(dìng)理 经过半径的外端并且垂直于这条半径的直线是圆的切线

123切线的性质定理 圆的切线垂直于经过{pinyin:guò}切点的半径

124推论1 经过圆心且垂直于切线的直线必经过[繁:過]切点

125推论2 经过切点且垂直于切线的直线(繁:線)必经过圆心

126切线长定理 从圆外一点引(拼音:yǐn)圆的两条切线,它们的切线长相等,

圆心和这一点(繁体:點)的连线平分两条切线的夹角

127圆的外切四边(繁:邊)形的两组对边的和相等

128弦切角定理 弦切(拼音:qiè)角等于它所夹的弧对的圆周角

129推论 如《rú》果两个弦切角所夹的弧相等,那么这两个弦切角也相等

130相交弦定理 圆内的两条相交弦[繁体:絃],被交点分成的两条线段长的积

相《拼音:xiāng》等

澳门金沙

131推论 如[读:rú]果弦与直径垂直相交,那么幸运飞艇弦的一半是它分直径所成的

两条线段的de 比例中项

132切割线定理 从圆外一点引圆的切线和[读:hé]割线,切线长是这点到割

线与{练:yǔ}圆交点的两条线段长的比例中项

133推论 从圆外一点引圆的(拼音:de)两条(繁:條)割线,这一点到每条割线与圆的交点的两条线段长的积相等

134如果两个圆相切,那么切点[繁:點]一定在连心线上

135①两圆(拼音:yuán)外离 d>R r ②两圆外切 d=R r

③两圆相交《读:jiāo》 R-r<d<R r#28R>r#29

④两圆内切 d=R-r#28R>r#29 ⑤两圆内[繁体:內]含d<R-r#28R>r#29

136定理 相交两圆(读:yuán)的连心线垂直平分两圆的公共弦

137定【读:dìng】理 把圆分成n#28n≥3#29:

⑴依次连结各分点所得的多边形是这个圆的内接正n边形{pinyin:xíng}

⑵经过(繁:過)各分点作圆的切线,以相邻切线的交点为顶点的多边《繁:邊》形是这个圆的外切正n边形

138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心(读:xīn)圆

139正n边形的每个{pinyin:gè}内角都等于#28n-2#29×180°/n

140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角《jiǎo》形

141正n边形的面积Sn=pnrn/2 p表示正n边形的周(繁体:週)长

142正三角形面积√3a/4 a表示边长[繁体:長]

143如果在一个顶点周围有k个正n边形的角,由于(繁:於)这些角的和应为

360°,因此(拼音:cǐ)k×#28n-2#29180°/n=360°化为#28n-2#29#28k-2#29=4

144弧长计【pinyin:jì】算公式:L=n兀R/180

145扇形面积公式:S扇形=n兀(读:wù)R^2/360=LR/2

146内公切线长= d-#28R-r#29 外公切(qiè)线长= d-#28R r#29

147完(wán)全平方公式:#28a b#29^2=a^2 2ab b^2

#28a-b#29^2=a^2-2ab b^2

148平方差公{pinyin:gōng}式:#28a b#29#28a-b#29=a^2-b^2。

本文链接:http://21taiyang.com/Family/3637980.html
初中数学找规律公式总结 求初《chū》中数学找规律常见公式(为中考)?转载请注明出处来源