物理学的“矢量”和数学的“向量”是一回事吗?为什么?我有幸回答这个问题!物理学中的“向量”与数学中的“向量”相同吗?数学中研究的矢量是自由矢量的缩写,即只要其大小和方向不变,其起点和终点就可以任意平行移动
物理学的“矢量”和数学的“向量”是一回事吗?为什么?
我有幸回答这个问题!物理学中的“向量”与数学澳门巴黎人中的{拼音:de}“向量”相同吗?
数学中研究的矢量是自由矢量的缩写,即只要其大小和方向不变,其起点和终点就可以任意平行移动。例如,物理学中的速度是自由矢量,只要确定了速度的大小和方向,就可以确定。此(读:cǐ)外,还包括质点运动学中的【拼音:de】力分析。虽然力有三个要素:大小、方向和作用点,但在研究质点运动时,将物体简化为质点
没有比这更复杂的动作点分析了。因此,在质点澳门博彩运动学中,物【读:wù】理上的矢量和数学上的自由矢量是同一回事。
此木杆[繁:桿]承受两个大小相等、方向相反的力,合力为0。它应该处于平衡状态。但你一眼就能看出木杆会转动。为什【练:shén】么?
径向矢量和力的叉积。这里不详细极速赛车/北京赛车讨论,但点(繁:點)积和叉积都符合数学中的运算法则。
为什么它在物理学中被称为{练:wèi}向量,而不是与数学相统一?
幸来回答这个问题!
首先表达一我个人的观点:矢量和向量的确是一回事情,在英文中都译为:vector,是一种既有大小又有方向的量,计算法则都是根据平行四边形定则。
那物理学的“矢量”和数学的“向量”是一回事{读:shì}吗?
事实上,向量分为(繁体:爲)自由向量和固定向量。
数学中所研究的向量是自由向量的简称,也就是只要不改变它的大小和方向,它的起点和终点可以任意平行移动的向量。比如物理中的速度就是自由向量,只要确定了速度的大小和方向,那么(繁:麼)就是确定的。另外还包括在质点运动学中的力的分析,力虽然有大小、方向、作用点这个三个要素,但是在研究质点运动中,物体会简化成为一个质点,作用点这个不做更复杂的分析,所以在质点运动学中,物直播吧理中的矢量和数学研究的自由向量是一回事。
但是在研究下面这个问题[繁体:題]的时候好像出了点问题
这个木杆,收到两个大小相等方向相反的力,合力为0,应该是保持平衡的状态,但是一眼就可以看出来木杆会(繁体:會)发生转动,这个是为什么(繁:麼)呢?
这是因为在研究这个问题上是属于物理中的刚体运动学了,这{练:zhè}个时候木杆已经不能简化成为一个质点,需要具体考虑力的作用【练:yòng】点了。比如我们把F1 向右平行一点,那对木杆的最终的运动状态肯定会发生变化了。在研究这类问题就属于固定向量了。需要引入力矩的概念:M=FxL,径向矢量与作用力的叉积
具体我就不在这里深入讨论了,但是不管是点积还是(shì)这里的叉积和数学中的运(繁:運)算规律都是shì 一致的。
总结一下:物理中质点运动学用到的矢量和数学研究中的(读:de)自由向量是完wán 全一回事情,但是刚体运动学中的矢量为固定向量,固定向量一般在数学中是不做研究的。
为什(拼音:shén)么物理中称呼为矢量,不和数学统一呢?
我个(繁:個)人的看法是,在物理电路理论中zhōng ,有个物理量是相量,也许是为了避免向量和相量发生混淆吧。不过只是个名词而已,不影响我们对它们的理解和使用,事实上台湾的物理界现在用的是向量这个(读:gè)词哦~
好了,就讨论到这里,澳门新葡京我是砂锅ASK,如果您觉得我的回答对您有帮助,帮忙点个赞吧《读:ba》~
本文链接:http://21taiyang.com/Family/2567479.html
高一{拼音:yī}物理矢量转载请注明出处来源