物理学的“矢量”和数学的“向量”是一回事吗?为什么?我有幸回答这个问题!物理学中的“向量”与数学中的“向量”相同吗?数学中研究的矢量是自由矢量的缩写,即只要其大小和方向不变,其起点和终点就可以任意平行移动
物理学的“矢量”和数学的“向量”是一回事吗?为什么?
我有幸回答这个问题!物理学中的“向量”与数学中的“向量”相{xiāng}同吗?
数学中研究的矢量是自由矢{pinyin:shǐ}量的缩写,即只要其大小和方向不变,其起点和终点就可以任意平行移动。例(pinyin:lì)如,物理学中的速度是自由矢量,只要确定了速度的大小和方向,就可以确定。此外,还包括质点运动学中的力分析
虽然力有三个要素:大小、方向和作用点,但在研究质点运动时,将物澳门威尼斯人体简化为质点。没有{pinyin:yǒu}比这更复杂的动作点分析了。因此,在质点运动学中,物理上的矢量和数学上的自由矢量是同一回事
此木杆《繁体:桿》承受两个大小相等、方向相反的力,合力为0。它应该处于平衡状态。但你一眼就能看出木杆会[繁体:會]转动。为什么?
径[繁:徑]向矢量和力的叉积。这里不详细讨论[繁体:論],但点积和叉积都符合数学中的运算法则。
为什么它在物理学中(zhōng)被称为向量,而不是与数学相统一?
幸来回答这个问题!
首先表达一我个人的观点:矢量和向量的确是一回事情,在英文中都译为:vector,是一种既有大小又有方向[繁:嚮]的量,计[繁体:計]算法则都是根据平行四边形定则。
那物理学的“矢量”和数学的[练:de]“向量”是一回事吗?
事实上,向量分为自由【练:yóu】向量和固定向量。
数学(繁体:學)中所研究的向量是自由向量的简称,也就是只要不改变它的大小和方向,它的起点和终点可以任意平行移动的向量。比如物理中的速度就是自由向量,只要确定了速度的大直播吧小和方向,那么就是确定的。另外还包括在质点运动学中的力的分析,力虽然有大小、方向、作用点这个三个要素,但是在研究质点运动中,物体会简化成为一个质点,作用点这个不做更复杂的分析,所以在质点运动学中,物理中的矢量和数学研究的自由向量是一回事。
但是在研究下面这个问题的时候好像出了点[diǎn]问题
这个木杆《繁:桿》,收到两个大小相等方向相反的力,合力为0,应该[繁:該]是保持平衡的状态,但是[练:shì]一眼就可以看出来木杆会发生转动,这个是为什么呢?
这是因澳门金沙为在研究这个问题上是属于物理中的刚体运动学了,这个时候木杆已经不能简化成为一个质点,需要具体考虑力的作用点了。比如我们(读:men)把F1 向右平行一点,那对木杆的最终的运动状态肯定会发生变化了。在研究这类问题就属于固定向量了
需要引{pinyin:yǐn}入力矩的概念:M=FxL,径向矢量与作用力的叉积。具体我就不在这里深入讨论了[le],但是不管是点积还是这里的叉积和数学中的运算规律都是一致的。
总结一下:物理中质点运动学用到的矢量和数学研究中的自由向量是完全一回事情,但是刚(繁体:剛)体运动学中的矢澳门新葡京量为固定向量,固定向量一般在数学中是不做研究的。
为什么物(pinyin:wù)理中称呼为矢量,不和数学统一呢?
我个人的澳门新葡京看法是,在物理电路理论中,有个物理量是相量,也许是为了避免向量和相量发生混淆吧。不过只是个名词而已,不影响我们对它们的理解和使用,事实上台湾的物理界现在用的是向量【liàng】这个词哦~
好了,就讨论到这里,我是砂锅ASK,如果您觉得我的回答对您有帮助,帮忙点个赞吧~
本文链接:http://21taiyang.com/Business-Operations/2567479.html
高一物理{pinyin:lǐ}矢量转载请注明出处来源