数据分析,数据挖掘,大数据,机器学习,深度学习,统计分析的区别是什么?这个问题最近刷到很多次,看来是要回答一下了。因实际工作中会接触数据分析、挖掘、大数据、机器学习及深度学习,这里分享一下自己对这些概念的认知
数据分析,数据挖掘,大数据,机器学习,深度学习,统计分析的区别是什么?
这个问题最近刷到很多次,看来是要回答一下了。因实际工作中会接触数据分析、挖掘、大数据、机器学习及深度学习,这里分享一下自己对这些概念的认知。数据分析 主要是面向结论。通常是通过人依赖自身的分析经验和对数据的敏感度(人智活动),对收集来的数据进行处理与分析,按照明确目标或维度进行【练:xíng】分[拼音:fēn]析(目标导向),获取有价值的信息。比如利用对比分析、分组分析、交叉分析等方法,完成现状分析、原因分析、预测分析,提取有用信息和形成结论。
数据挖掘 主要是面向决策。通常是指从海量(巨量)的数据中,挖掘出未知的且有价值的信息或知{zhī}识的过程(探索性),更好地发挥或利用数据潜在价值。比如利用规则、决策树、聚类、神经网络等概率论、统计学澳门新葡京、人工智能等方法,得出规则或者模型,进而利用该规则或模型获取相似度、预测值等数据实现海量数据的分类、聚类、关联和预测,提供决策依据。
需要注意,较传统数据挖(wā)掘主要针对澳门新葡京相对少量、高质量的样本数据,机器学习的发展应用使得数据挖掘可以面向海量、不完整 、有噪声、模糊的数据。
数据统计 同样是面向结论,只不过是【读:澳门威尼斯人shì】是把模糊估计的结论变得精确而定量。比如。得出具体的总和、平均值、比率的统计值。
从广义上讲,广义的数据分析分为如上介绍的数据分析、数据挖掘、数据统计三个方向。
机器学习 是一门专门研究极速赛车/北京赛车计算机怎样模拟或实现人类的学习行为,能够赋予机器学习的能力以让它完成通过编程无法完成的功能,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能的学科,但机器学习不会让机器产生“意识和思考”,它是概率论与统计学的范畴,是实现人工智能的途径之一《yī》。
深度学习 是机器学习的一个子领域,受大脑神经网络的结构和功能启发而创造的算法,能够从大数据中自动学习特征,以解决任何需要思考的问题。从统计学上来讲,深度学习就是在预测数据,从数据中学习产出一开云体育个模型(xíng),再通过模型去预测新的数据,需要注意的是训练数据要遵循预测数据的数据特征分布。它也是实现人工智能的途径之一。
机器[拼音:qì]学习中的“训练【繁:練】”与“预测”过程可以《拼音:yǐ》对应到人类的“归纳”和“推测”过程。
本文链接:http://21taiyang.com/Business-Operations/11928586.html
指标深【读:shēn】度分析转载请注明出处来源